Multiplex PCR Primer Design Software

Visual OMP software makes it easy to design sets of primers and probes optimized to work under your experimental conditions. Design primer pairs and probe sets in any combination, even in the presence of your existing oligo sets. Once you indicate the details of your experiment, Visual OMPs powerful design algorithm uses the nearest-neighbor model and coupled multi-state equilibrium models to simulate thousands of possible combinations in order to identify the most selective and sensitive oligo solution sets. Design strategies are customizable to your hybridization system, where users may choose to limit amplicon length or primer or probe length and melting temperature for example.

PCR Primer Design

Specify a target, choose a design type, and define experiment conditions and Visual OMP’s design engine will automatically determine the most stable and specific PCR primer design for your single- or multiplexed assay.

Analyze existing assays

Visual OMP’s simulation engine allows for the input and thermodynamic analysis of existing primers in the presence of newly designed primers in a molecular simulation.

Molecular Beacon Design

Visual OMP will optimize beacon probe and stem length design for a given set of experimental conditions to ensure that free beacons form hairpins to quench fluorescence, while selectively bound beacons fluoresce. Beacons can also be simulated using a variety of flurophore and quencher pairs to optimize your assay.

Single Nucleotide Polymorphism (SNP) Design and Simulation

Sensitivity can be a huge factor when designing for SNPs due to cross-hybridization which may lead to false positives. Visual OMPs design engine can design allele-specific primers and probes to optimize polymorphism detection sensitivity.

Multiplex PCR Primer Design

Visual OMP provides a ranked set of highly specific multiplex PCR primer designs which do not cross-hybridize or form primer dimers.

Taqman Probe design

Visual OMP can design highly selective Taqman probe sequences that can be simulated to exhibit the thermodynamic effects of fluorophores, quenchers and minor groove binders to DNA duplex stability.

Microarray Probe Design and Analysis

False positives and negatives can be avoided by utilizing Visual OMP to increase the quality and performance of DNA probes while simultaneously avoiding cross-hybridization and mishybridization.

RNA Target Selection

Fast and accurate simulated folding under a variety of salt and temperature profiles simplifies RNA target accessibility and complexity to optimize primer and probe design.